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Magnetic fluid hyperthermia is one of hyperthermia modalities for tumor treatment. The control of tem-
peratures is necessary and important for treatment quality. Living tissue is highly non-homogenous, and
the velocity of heat transfer in it should be limited. Thus, this work analyzes the temperature rise behav-
iors in biological tissues during hyperthermia treatment within the dual-phase-lag model, which
accounts the effect of local non-equilibrium on the thermal behavior. A small tumor surrounded by
the health tissue is considered as a solid sphere. The influences of lag times, metabolic heat generation
rate, blood perfusion rate, and other physiological parameters on the thermal response in tissues are
investigated. While the metabolic heat generation takes little percentage of heating source, its effect
on the temperature rise can be ignored. The control of the blood perfusion rate is helpful to have an ideal
hyperthermia treatment. The lag times, sq and sT, affect the bio-heat transfer at the early times of heating.
The total effect of sq and sT on the bio-heat transfer may be different for the same sT/sq value.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Cancer cells have a higher chance of dying when the tempera-
ture is above 42.5 �C, and the rate of death drastically increases
with increasing temperature [1]. Magnetic fluid hyperthermia is
one of hyperthermia modalities for tumor treatment. In magnetic
tumor hyperthermia, fine magnetic particles are localized at the
tumor tissue. Then, an alternating magnetic field is applied to the
target region, which heats the magnetic particles by magnetic hys-
teresis losses. These particles might act as localized heat sources.
An ideal hyperthermia treatment should selectively destroy the
tumor cells without damaging the surrounding healthy tissue.
Moroz et al. [2] stated that magnetic fluid hyperthermia had the
maximum potential for such selective targeting. It was absolutely
a necessity for hyperthermia treatment planning to understand
the heat transport occurring in biological tissues [3]. Especially,
the temperature distribution inside as well as outside the target
region must be known as function of the exposure time in order
to provide a level of therapeutic temperature and, on the other
hand, to avoid overheating and damaging of the surrounding
healthy tissue .

Several papers [4–8] have studied the behavior of bio-heat
transfer in multi-layer living tissues during hyperthermia treat-
ment with the Pennes’ equation. Andrä et al. [4] modeled small
breast carcinomas surrounded by extended health tissue as a solid
ll rights reserved.
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sphere with constant heat generation. They gave an elementary
solution of the original heat conduction problem without the
effects of blood perfusion and metabolism. Bagaria and Johnson
[5] considered the tissue model as two finite concentric spherical
regions with the blood perfusion effect and presented analytical
and numerical solutions to the model with the mixed boundary
conditions. Maenosono and Saita [6] carried out theoretical assess-
ment of FePt magnetic nanoparticles as heating elements for
hyperthermia. The temperature rise behavior in vivo with the Neu-
man boundary conditions in spherical co-ordinates was estimated.
Durkee et al. [7] offered the exact solutions to the Pennes’ bio-heat
equation in one-dimensional multi-layer spherical geometry.
Tsuda et al. [8] developed an inverse method to optimize the heat-
ing conditions during a hyperthermia treatment.

It was well known that the Pennes’ equation was based on the
classical Fourier’s law that depicted an infinitely fast propagation
of thermal signal. In reality, accumulating enough energy to trans-
fer to the nearest element would take time in the process of heat
transfer. The literatures [9–11] reported the relaxation time in bio-
logical bodies to be 20–30 s. Mitra et al. [12] found the relaxation
time for processed meat is of the order of 15 s. The experimental
investigation made by Roetzel et al. [13] showed the value of relax-
ation time about 2 s for processed meat. The above literatures fur-
ther supported the phenomenon of finite thermal propagation
velocity in the process of bio-heat transfer. Since the concept of
finite heat propagation velocity received the attention from rele-
vant researchers [14–17], the paradox occurred in the classical
heat transfer model was solved. Although the thermal wave model
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Nomenclature

a length of tissue, m
c specific heat of tissue, J/kg K
cb specific heat of blood, J/kg K
f parameter defined in Eq. (21)
H new dependent variable, H = r(T � Ti)
~H Laplace transform of H
k thermal conductivity, W/m K
K parameter defined in Eq. (22)
‘ distance between two neighboring nodes, m
n total number of nodes
P power density, W/m3

qm metabolic heat generation, W/m3

qr spatial heating source, W/m3

r space coordinate, m
R radius of tumor, m
s Laplace transform parameter
t time, s

T temperature of tissue, �C
Tb arterial temperature, �C
Ti initial temperature of tissue, �C
wb perfusion rate of blood, m3/s/m3

Greek symbols
k parameter defined in Eq. (20)
q density, kg/m3

w volume fraction of magnetic particles
s relaxation time, s

Subscripts
i node number
j number of sub-space domain
k number of layer
m magnetic particle
t tumor tissue
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can solve the paradox of instantaneous responses of thermal dis-
turbance occurred in the classical heat conduction equation, some
studies [18–20] showed that the thermal wave model introduced
some unusual behaviors and physically solutions. The rational
thermal analysis is essential and helpful to the development of
hyperthermia.

This work uses the dual-phase-lag (DPL) model to predict the
temperature rise behavior in a two-layer concentric spherical re-
gion during magnetic tumor hyperthermia treatment. The DPL
model describes a macroscopic temperature with the micro-
structural effect by introducing the phase lag times of heat flux
and temperature gradient [21]. Antaki [22] has used the DPL
model to interpret heat conduction in processed meat that was
interpreted with the thermal wave model. From the measure-
ment temperatures in Ref. [12], Antaki [22] predicted the phase
lag time of heat flux to be 14–16 s and the phase lag time of
temperature gradient to be 0.043–0.056 s for processed meat.
Due to the geometry effect and the interfacial boundary condi-
tions, the non-Fourier bio-heat transfer problem in a concentric
spherical domain introduces the complexity and causes some
mathematical difficulties. This work develops a hybrid numerical
scheme based on the Laplace transform, change of variables, and
the modified discretization technique in conjunction with the
hyperbolic shape functions for solving the present problem.
The similar method was used to solve various non-Fourier heat
transfer problems and obtained the accurate results [23–25].
On the other hand, the metabolic heat generation rate and the
blood perfusion rate may affect the temperature rise behavior
in vivo during hyperthermia treatment. There exists the differ-
ence in metabolic heat generation rate, blood perfusion rate,
and other physiological parameters between tumor and normal
tissue [26–28]. It is a necessity to explore the influences of lag
times, metabolic heat generation rate, blood perfusion rate, and
other physiological parameters on the non-Fourier thermal re-
sponse in tumor and health tissue for the present work.

2. Mathematical formulation

In a magnetic fluid hyperthermia, magnetic particles are in-
jected into and homogenously distributed in a small tumor sur-
rounded by the normal tissue. The small tumor is regarded as a
solid sphere with the radius R [4–6] and becomes a heat source
of constant power density P in the small tumor for excitation of
alternating magnetic field. For t > 0, heat symmetrically transfers
in the radius direction. The temperature distribution in the tumor
(0 6 r 6 R) and normal (R 6 r 61) tissues is the function of the
distance r from the center of the sphere and time t. The present
work explores the thermal behavior of DPL bio-heat transfer from
this system.

The linearized form of the DPL model is based on the equation

sq
oq
ot
þ q ¼ �k

oT
or
� ksT

o2T
otor

ð1Þ

where T is the temperature, k the heat conductivity, q the heat flux, t
the time, and r the space variable. sq means the phase lag of the heat
flux and sT means the phase lag of the temperature gradient. The
heat flux precedes the temperature gradient for sq < sT. The temper-
ature gradient precedes the heat flux for sq > sT. The DPL model de-
picts that not only the temperature gradient may precede the heat
flux, but also the heat flux may precede the temperature gradient. In
bio-heat transfer, Antaki [22] interpreted sq as a delay time for con-
tact resistance between tissue particles. On the other hand, sT was
interpreted as a measure of the conduction that occurs within
tissues particles.

In a local energy balance, the one-dimensional energy equation
of the present problem is given as

qc
oT
ot
¼ � oq

or
� 2

r
qþwbqbcbðTb � TÞ þ qm þ qr ð2Þ

where q, c, k, and T denote density, specific heat, thermal conductiv-
ity, and temperature in two regions. qb, cb, and wb, respectively, are
the density, specific heat, and perfusion rate of blood. qm is the met-
abolic heat generation and only is a function of r in the present
problem. The spatial heating source qr is defined as qr = Pu(t), where
u(t) is a step function. Tb is the arterial temperature and is specified
as 37 �C. The region 0 6 r 6 R is a composite of tumor and magnetic
particles. The effective density q1 and the effective specific heat c1

are calculated as q1 = wqm + (1 � w)qt and c1 = wcm + (1 � w)ct,
where subscripts m and t symbol the magnetic particles and the tu-
mor tissue. w is the volume fraction of magnetic particles.

Substituting Eq. (1) into the energy conservation equation (2)
leads to the heat transport equations in the tumor and normal
tissues with constant physiological parameters as the following:
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k1
1
r2

o

or
r2 oT1

or
þ sT1

o2T1

otor

 !" #

¼ 1þ sq1
o

ot

� �
q1c1

oT1

ot
�wb1qbcbðTb � T1Þ � qm1 � qr1

� �
for 0 6 r 6 R ð3Þ

k2
1
r2

o

or
r2 oT2

or
þ sT2

o2T2

otor

 !" #

¼ 1þ sq2
o

ot

� �
q2c2

oT2

ot
�wb2qbcbðTb � T2Þ � qm2

� �
for R 6 r 61 ð4Þ

The present work regards the temperature and the heat flux at
the interface of two regions is continuous. The boundary condi-
tions are described as

oT1ð0; tÞ
or

¼ 0 and T1ð0; tÞ is finite ð5Þ

T1ðR; tÞ ¼ T2ðR; tÞ ð6Þ

q1ðR; tÞ ¼ q2ðR; tÞ ð7Þ

T2ð1; tÞ ¼ Ti ð8Þ

and the initial conditions are

Tkðr;0Þ ¼ Ti;
oTkðr; 0Þ

ot
¼ 0; and qkðr;0Þ ¼ 0 k ¼ 1;2 ð9Þ

where the subscript k is the number of layer. k = 1 and k = 2 mean
the tumor and the normal tissue, respectively. The initial tempera-
ture Ti is regarded as the arterial temperature.

3. Numerical scheme

For convenience of analysis, a new dependent variable H is de-
fined as

H ¼ rðT � TiÞ ð10Þ

The temperature difference, T � Ti, is equal to H/r. The value of
H/r at r = 0 is indeterminate and must be replaced by its limit as
r ? 0. Thus the value of the transient temperature at the center,
T(0, t), is evaluated by using L’Hôspital’s rule as

Tð0; tÞ ¼ lim
r!0

H
r
þ Ti ¼

dH
dr
þ Ti ð11Þ

Under the circumstance, Eqs. (3) and (4) in terms of H for Ti = Tb

can be rewritten as

k1 1þ sT1
o

ot

� �
o2H1

or2 ¼ 1þ sq1
o

ot

� �
q1c1

oH1

ot
þwb1qbcbH1

�
þðqm1 þ qr1Þr

�
for 0 6 r 6 R ð12Þ

k2 1þ sT2
o

ot

� �
o2H2

or2 ¼ 1þ sq2
o

ot

� �
q2c2

oH2

ot
þwb2qbcbH2 þ qm2r

� �
for R 6 r 61 ð13Þ

The boundary conditions and the initial conditions become

H1ð0; tÞ ¼ 0 ð14Þ

H1ðR; tÞ ¼ H2ðR; tÞ ð15Þ

q1ðR; tÞ ¼ q2ðR; tÞ ð16Þ

H2ða; tÞ ¼ 0 ð17Þ
and

Hkðr; 0Þ ¼ 0;
oHkðr;0Þ

ot
¼ 0; and qkðr;0Þ ¼ 0 k ¼ 1;2 ð18Þ

Subsequently, the Laplace transform technique is used to map
the transient problem into the steady one. The differential equa-
tions (12) and (13) are transformed under the initial conditions
(18) as

d2 eHk

dr2 � k2
k
eHk ¼ �fkr ð19Þ

where s is the Laplace transform parameter of time t. k2
k , f1, f2, and Kk

are defined as

k2
k ¼

1
Kk
ðqkcksþwbqbcbÞ k ¼ 1;2 ð20Þ

f1 ¼
qm1 þ Pð1þ sq1sÞ

k1ð1þ sT1sÞs ð21aÞ

f2 ¼
qm2

k2ð1þ sT2sÞs ð21bÞ

Kk ¼ kk
1þ sTks
1þ sqks

k ¼ 1;2 ð22Þ

In accordance with Eq. (1), the boundary conditions (14)–(17) in
the Laplace transform domain can be written as

~H1ð0; sÞ ¼ 0 ð23Þ

~H1ðR; sÞ ¼ ~H2ðR; sÞ ð24Þ

K1
d~H1ðR; sÞ

dr
�

~H1

R

 !
¼ K2

d~H2ðR; sÞ
dr

�
~H2

R

 !
ð25Þ

~H2ð1; sÞ ¼ 0 ð26Þ

The present paper divides the whole space domain into several
sub-space domains. For continuities of heat flux and temperature
within the whole space domain, the following conditions are re-
quired at the interface of the sub-space domain j � 1, [ri�1,ri],
and the sub-space domain j, [ri,ri+1].

~Hj�1;kðriÞ ¼ ~Hj;kðriÞ i ¼ 1;2; . . . ;n; j ¼ i; k ¼ 1;2 ð27Þ

Kk
d~Hj�1;kðriÞ

dr
�

~Hj�1;k

ri

 !
¼ Kk

d~Hj;kðriÞ
dr

�
~Hj;k

ri

 !
i ¼ 1;2; . . . ; n; j ¼ i; k ¼ 1;2 ð28Þ

where the subscript i is the number of node. n is the total number of
nodes.

A modified discretization technique based on Eqs. (27) and (28)
is developed for the governing algebraic equations in the present
paper. Before performing the derivation of the governing algebraic
equations, ~H should be approximated by using the nodal tempera-
tures and shape function within a small sub-space domain. It is a
necessity to carefully choose he shape functions for the accuracy
and stability of the numerical results [20]. Thus, the present work
derives the shape functions from the governing equation (19).

For the sub-space domain j, [ri, ri+1], the analytical solution of
the governing equation (19) subjected to the boundary conditions

~Hj;kðriÞ ¼ ~Hi;k and ~Hj;kðriþ1Þ ¼ ~Hiþ1;k ð29Þ

are easily obtained and can be written as
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Fig. 1. Variation of temperature at different reduced distance r/R from the center
for sT = sq = 0 and sT = 0.043 s and sq = 16 s.
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~Hj;k ¼
1

sinh kk

~Hi;k �
fk

k2
k

rk

 !
sinh kkðriþ1 � rÞ

(

þ ~Hiþ1;k �
fk

k2
k

riþ1

 !
sinh kkðr � riÞ

)
þ fk

k2
k

r ð30Þ

Similarly, Eq. (25) in the sub-space domain k � 1, [ri�1, ri], can be
written as

~Hj�1;k ¼
1

sinh kk

~Hi�1;k �
fk

k2
k

ri�1

 !
sinh kkðri � rÞ þ ~Hi;k �

fk

k2
k

ri

 !(

sinh kkðr � ri�1Þ
)
þ fk

k2
k

r ð31Þ

where ‘ denotes the length of sub-space domain or the distance be-
tween two neighboring nodes. The value of ‘ can be different in the
different layer.

Substituting Eqs. (27), (30), and (31) into Eq. (28) and then eval-
uating the resulting derivative can lead to the discretized form for
the interior nodes in layer k as following

~Hi�1;k � 2 coshðkkrÞ~Hi;k þ ~Hiþ1;k ¼
fk

k2
k

ri�1 � 2ri coshðkkrÞ þ riþ1½ �

ð32Þ

The discretized form for the node at the interface of the tumor
and normal tissues, r = R, can be obtained from the boundary con-
dition (25) and is written as

K1
k1

sinh k1‘
~Hi�1;1 � K1

k1 cosh k1‘

sinh k1‘
þ K2

k2 cosh k2‘

sinh k2‘
þ K2

R
� K1

R

� �
~Hi;ð1;2Þ þ K2

k2

sinh k2‘
~Hiþ1;2

¼ K1
1

sinh k1‘

f1

k1
ðR� ‘Þ � K1

cosh k1‘

sinh k1‘

f1

k1
þ K2

cosh k2‘

sinh k2‘

f2

k2

� �
Rþ K2

1
sinh k2‘

f2

k2
ðRþ ‘Þ þ K1

f1

k2
1

� K2
f2

k2
2

ð33Þ

Eqs. (32) and (33) in conjunction with the discretized forms of
the boundary conditions can be rearranged as the following matrix
equation

½B�f~Hg ¼ fFg ð34Þ

where [B] is a matrix with complex numbers, f~Hg is a column vector
in the Laplace transform domain, and {F} is a column vector repre-
senting the forcing term. Thereafter, the value of H in the physical
domain can be determined with the application of the Gaussian
elimination algorithm and the numerical inversion of the Laplace
transform [29].
4. Results and discussion

The present results are for a small spherical tumor of radius
R = 0.00315 m with a constant power density of 6.15 � 106 W/m3

embedded in extended muscle tissue. The values of relevant
thermal parameters are taken to be k1 = 0.778 W/Km, q1 =
1660 kg/m3, c1 = 2540 J/kgK, k2 = 0.642 W/Km, q2 = 1000 kg/m3,
and c2 = 3720 J/kgK [4]. The metabolic heat generation rates of tu-
mor and normal tissue are respectively determined as qm1 =
29,000 W/m3 and qm2 = 450 W/m3. The corresponding perfusion
rates are wb1 = 0.009 m3/s/m3 and wb2 = 0.00018 m3/s/m3 [14].
The volumetric heat capacity of blood is qbcb = 4.18�106 J/m3/K
[6]. Some parameter values are possibly adjusted for comparison
and discussion and are noted in each figure. The phase lag times
determined by Antaki [22] based on the measured temperatures
of Mitra et al. [12] become the reference values of sq and sT. All
the computations are performed with the uniform space size
‘ ¼ R=100.

Fig. 1 presents the variation of temperature at different reduced
distance r/R from the center for sT = sq = 0 (i.e., sT1 = sT2 = 0;
sq1 = sq2 = 0) and for sT = 0.043 s (i.e., sT1 = sT2 = 0.043 s) and sq=
16 s (i.e., sq1 = sq2 = 16 s). As sT = sq = 0, the Pennes’ equation can
describe the behavior of bio-heat transfer. The thermal response
is extremely fast at the locations r/R = 0.65, 1.0, 1.35, and 1.7 for
the infinite propagation velocity of thermal signal, and the temper-
atures gradually rise with time for the continuous heating. As
sT = 0.043 s and sq = 16 s, the non-Fourier effect is obvious in the
behavior of bio-heat transfer. Since the locations r/R = 1.35 and
r/R = 1.7 are out of the range of heating source, the thermal signal
reaches them needs a period. The finite propagation effect also
makes the curves of temperature variation wave. The waving phe-
nomenon is more obvious near the heating source. The predicted
temperatures from the equation for the dual-phase-lag model of
bio-heat transfer are higher than those from the Pennes’ equation
during 0 < t < 200 s. After that, the predicted temperatures ap-
proach consistence for sT = sq = 0 and sT = 0.043 s and sq = 16 s.
The above results reflect that the dual-phase-lag model accounts
the effects of local non-equilibrium on the thermal behavior at
the early times of heating.

The metabolic heat generation and blood perfusion rates are
important characteristics of living tissues. In accordance with Refs.
[27,28], the metabolic heat generation and blood perfusion rates
are different between tumor and normal tissue. However, Maeno-
sono and Saita [6] regarded their same values for tumor and
normal tissue. Andrä et al. [4] predicted the temperature distribu-
tion in breast with neglecting the effects of blood perfusion and
metabolism. Obviously, the metabolic heat generation rate and
the blood perfusion rate are not uncertainties. This difference
may significantly affect the temperature rise during a hyperther-
mia treatment. The present work explores the effect of the meta-
bolic heat generation rate on the non-Fourier bio-heat transfer,
as shown in Fig. 2, in which presents the temperature distributions
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for qm1 = qm2 = 0, qm1 = qm2 = 540 W/m3, and qm1 = 29,000 W/m3

and qm2 = 450 W/m3 at various times. The temperatures are higher
in the domain occupied by the heat source. For heat diffusing, the
affected domain increases with time, but the rising rate of temper-
ature becomes slow. Further, it is observed from Fig. 2 that the
temperature distributions of these three cases are very similar.
The metabolic heat generation rate seems not to affect the non-
Fourier behavior of bio-heat transfer in the present problem.
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Fig. 3 presents the history of thermal response at various loca-
tions for wb1 = wb2 = 0.0064 m3/s/m3, which was used by Maenoso-
no and Saita [6] to estimate the temperature rise behavior in vivo
with solving the Pennes’ equation. The blood perfusion plays the
cooling role, while the temperature of blood is regarded as the con-
stant temperature 37 �C. As the difference between the tumor and
blood temperatures is not large enough yet, the amount of heat
loss through the blood perfusion is small and the cooling function
is not obvious. Correspondingly, as the difference between the tis-
sue and blood temperatures is enlarged, the heat loss through the
blood perfusion increases and slows down the rising rate of tem-
perature, as shown in Fig. 3. It is possible that the temperature dis-
tribution in the tissues comes to the steady status for the cooling
effect of the blood perfusion. The comparison of Fig. 3 with Fig. 1
shows that the blood perfusion rate changes from
wb1 = 0.009 m3/s/m3 and wb2 = 0.00018 m3/s/m3 to wb1 = wb2 =
0.0064 m3/s/m3 does not affect the behavior of thermal wave, but
able to adjust the tissue temperature.

For high Curie temperature, high saturation magnetization, and
high chemical stability, FePt magnetic nanoparticles (MNPs) are
used for magnetic hyperthermia. Maenosono and Saita [6] pre-
sented that 9-nm fcc FePt MNPs can dissipate the energy
p = 3.97 � 105 W/m3 in the magnetic field that amplitude and fre-
quency are fixed at 50 mT and 300 kHz for the volume fraction
w = 2 � 10�5. Fig. 4 illustrates the transient temperatures at the
locations r/R = 0.65, 1.0, 1.35, and 1.7 for qm1 = qm2 = 540 W/m3

and p = 3.97 � 105 W/m3. It is found that the curves in Fig. 4 are
similar to those in Fig. 1, except the values of the temperature dif-
ference T � Ti. The proportion of the temperature value in Fig. 1 to
that in Fig. 4 almost equals to 6.15 � 106 W/m3/3.97�105 W/m3.
This phenomenon implies that the cooling function of blood perfu-
sion does not efficiently work as wb1 = 0.009 m3/s/m3 and
wb2 = 0.00018 m3/s/m3. Also, 540 W/m3 and 450 W/m3 compared
to 6.15 � 106 W/m3 and 3.97 � 105 W/m3 are very small, so the ef-
fect of the metabolic heat generation on the temperature rise can
be ignored.
0 100 200 300
0

0.4

0.8

1.2

1.6

2

T
em

pe
ra

tu
re

 d
if

fe
re

nc
e,

 T
-T

i, 
(˚

C
)

Time, t, (s) 

qm1=qm2=540W/m3

qr1=397000W/m3

r/R= 0.65

r/R= 1.0

r/R= 1.7

r/R= 1.35

Fig. 4. Transient temperatures at the locations r/R = 0.65, 1.0, 1.35, and 1.7 for
qm1 = qm2 = 540 W/m3 and p = 3.97 � 105 W/m3.



0 50 100 150
0

4

8

12

T
em

pe
ra

tu
re

 d
if

fe
re

nc
e,

 T
-T

i, 
(˚

C
)

Time, t, (s)

τ q=16.s; r/R=1.5

τT=0.043s

τT=1.s

τ T=3.s

Fig. 6. Variation of thermal response at r/R = 1.5 for sq = 16 s and various values of
sT.

1190 K.-C. Liu, H.-T. Chen / International Journal of Heat and Mass Transfer 52 (2009) 1185–1192
The lag times, sq and sT, are the characteristic of the dual-
phase-lag model. To explore the effects of sq and sT on the
bio-heat transfer, Fig. 5 shows the history of thermal response
at the locations r/R = 1.0, 1.5, and 2.5 for sT = 0.0215 s and sq =
8 s, sT = 0.043 s and sq = 16 s, and sT = 0.0645 s and sq = 24 s. It
is observed from Fig. 5 that these three sets of sq and sT, which
have the same sT/sq value, do not get the same behavior of tem-
perature rise. In other words, the total effect of sq and sT on the
bio-heat transfer may be different for the same sT/sq value. Since
the location r/R = 1.0 is within the range of heating source, the
thermal response is not delay there. The thermal delay appears
at the locations r/R = 1.5 and 2.5, and the delay time is propor-
tional to the distance from the center of tumor. It shows the
behavior of finite propagation of thermal signal. In accordance
with the contents of the literatures [21,24,30], it is known that
the lag time sq can dominate the behavior of thermal wave
propagation, slow down the propagation velocity of thermal sig-
nal, and manifest the feature of thermal wave. Due to the effect
of sT, the characters of thermal wave would decay in DPL heat
transfer. As sT = 0.0645 s and sq = 24 s, the propagation velocity
is slower, but the feature of thermal wave is obvious. Probably,
the effect of sq = 24 s on the present problem is over the effect
of sT = 0.0645 s. On the other hand, the thermal wave propaga-
tion is gradually replaced by the diffusion behavior with the
penetration distance of thermal signal increasing. With time
passing over, the local temperature approaches the same for
the present three sets of sq and sT. This phenomenon demon-
strates that the lag times, sq and sT, affect the bio-heat transfer
only at the early times of heating.

Further, to know the effect of sT on the bio-heat transfer, Fig. 6
presents the variation of thermal response at r/R = 1.5 for sq = 16 s
and various values of sT. It is found that increasing the value of sT

can shorten the time which the thermal signal reaches the location
r/R = 1.5. This result implies that the effect of sT can assist heat en-
ergy diffuse. The affected degree is proportional to the value of sT.
As sT = 3 s, the behavior of thermal wave decays at a faster rate and
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the temperature variation curve becomes smoother. The lag time
sT reflects the micro-structural interaction effect in the media of
heat transfer [21]. In other words, the micro-structural interaction
effect can significantly extend the physical domain of the thermal
penetration depth.

The values of sq and sT may be different in tumor and normal
tissue as well as the other physiological parameters. For compari-
son and discussion, the present work assumes two sets of sq and sT.
The first set is sT1 = 0.043 s; sq1 = 24 s and sT2 = 0.056 s; sq2 = 14 s,
and the other is sT1 = 0.056 s; sq1 = 14 s and sT2 = 0.043 s; sq2 = 24 s.
Fig. 7 plots the temperature distributions at t = 50 s, 250 s, and
650 s for these two sets of sq and sT. From the results shown in Figs.
5 and 6, it is known that the ability of heat transfer in the media
increases with the value of sT, but not with the value of sq. As
sT2 = 0.056 s and sq2 = 14 s, heat energy can be transported away
from the interface of the tumor and normal tissue at a faster veloc-
ity. Therefore, the tumor temperature for the first set of sq and sT is
lower than that for the other set at t = 50 s, but the affected domain
is larger. As t = 250 s, the effects of the difference in the lag times
between the tumor and normal tissue on the temperature distribu-
tion nearly disappear, and two temperature distribution curves al-
most coincide in the domain 0 6 r 6 0:016m. At t = 650 s, the
temperature distribution curves are completely consistent. It fur-
ther shows that the behavior of non-Fourier bio-heat transfer is
concerned with the lag times only at the early stages of heating.

Fig. 8 presents the temperature distributions with wb1 = wb2 =
0.0064 m3/s/m3 at various times for sTi = 0.056 s; sq1 = 14 s and
sT2 = 0.043 s; sq2 = 24 s. The comparison between Figs. 7 and 8
shows that the blood perfusion rate can dominate the temperature
distribution. In substance, the amount of heat loss through the
blood depends on the perfusion rate. At t = 50 s, the most part of
heat energy still accumulates in the tumor domain, thus the tumor
temperature for wb1 = 0.0064 m3/s/m3 is slightly higher than that
for wb1 = 0.009 m3/s/m3, as shown in Fig. 7. When the blood perfu-
sion rate in the normal tissue increases from wb2 = 0.00018 m3/s/
m3 to wb2 = 0.0064 m3/s/m3, the cooling ability of the whole
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domain is enhanced. With time passing, the heat loss through
the blood perfusion increases. Then the rate of temperature rise
tends to be gradual. As t = 250 s, the temperature distribution is
nearly steady. Judging from this, the blood perfusion rate can
control the tumor temperature and the affected domain. In other
words, the control of the blood perfusion rate is helpful to have
an ideal hyperthermia treatment, which should selectively de-
stroy the tumor cells without damaging the surrounding healthy
tissue.

Fig. 9 presents the variation of T � Ti at r = 0 for various sets of sT

and sq. Though the location r = 0 is a singular point in this problem,
the present numerical results are stable and have the finite value. It
presents that the present numerical scheme is stable for analyzing
such problems. For sT = sq = 0, the temperature smoothly rises with
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time and approaches to the status of thermal equilibrium at r = 0.
The behavior of thermal wave is obvious and gradually reduces
with time for sT = 0.056 s; sq = 14 s and sT1 = 0.056 s; sq1 = 14 s
and sT2 = 0.043 s; sq2 = 24 s. Due to the difference of the physiolog-
ical parameters, the internal reflection and transmission occur at
the interface of the tumor and normal tissue. The reflected thermal
pulses move toward the center of tumor r = 0 and make the tem-
perature sharply vary. In the case of sT1 = 0.056 s; sq1 = 14 s and
sT2 = 0.043 s; sq2 = 24 s, the ability of heat transfer of the normal
tissue is reduced for the effect of the lag times. Heat energy is more
difficult to be transferred away from the interface. Thus the tem-
perature drops down at a slower rate. It means that decreasing
the value of sq can increase the ability of heat transfer in the media.
Actually, the other thermal properties can also affect energy pass-
ing through the interface [24,30].

5. Conclusions

The behavior of bio-heat transfer in multi-layer living tissues
with the non-Fourier effect is studied during magnetic hyperther-
mia. A hybrid numerical scheme based on the Laplace transform,
change of variables, and the modified discretization technique in
conjunction with the hyperbolic shape functions is extended to
solve the non-Fourier bio-heat transfer problem in spherical coor-
dinate system. The influences of lag times, metabolic heat genera-
tion rate, blood perfusion rate, and other physiological parameters
on the non-Fourier thermal response in tumor and normal tissue
are discussed.

While the metabolic heat generation takes little percentage of
heating source, its effect on the temperature rise can be ignored.
The cooling effect of the blood perfusion can control the tumor
temperature and the affected domain. The control of the blood per-
fusion rate is helpful to have an ideal hyperthermia treatment. It is
known that the lag time sq can dominate the behavior of thermal
wave propagation, slow down the propagation velocity of thermal
signal, and manifest the feature of thermal wave. The effect of sT

can assist heat energy diffuse and make the characters of thermal
wave decay in DPL heat transfer. However, the total effect of sq and
sT on the bio-heat transfer may be different for the same sT/sq va-
lue. Actually, the behavior of non-Fourier bio-heat transfer is con-
cerned with the lag times only at the early stages of heating. The
lag time sT reflects the micro-structural interaction effect in the
media. In other words, the micro-structural interaction effect can
significantly affect the transient behavior of bio-heat transfer in
living tissues.

However, the lag times, the metabolic heat generation rate and
the blood perfusion rate are not uncertainties. The experiment to
further know these effects is needed.
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